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Abstract

The intent of this paper and its companion paper is to pull

together the essential information required for the traditional Ra-

man lidar data analysis to be performed. As a part of this, com-

plications such as the temperature dependence of the water vapor

signal is evaluated through numerical simulation. A new form of.

the lidar equation is presented that accounts for the temperature

dependence of Raman scattering. Also the calculation of atmo-

spheric transmission is examined carefully. Several photon cor-

rection techniques are considered as is the influence of multiple

scattering on the measurement of aerosol extinction using the Ra-

man lidar technique. OCIS # 010.3640, 010.3920, 999.9999
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1 Introduction

The Raman lidar is well established today as a leading research tool in the study of numerous areas of importance in the at-

mospheric sciences. The Raman lidar has been used to study the passage of frontal systems [1], stratospheric aerosols due to

volcanic eruptions [2], atmospheric temperature variations in cirrus clouds [3], long term variation of water vapor and aerosols at

a mid-continental site [4], cloud liquid water [5], cirrus cloud optical properties [6], the influence of thin cirrus clouds on satellite

retrievals of water vapor [7], hygroscopic growth of aerosols [8], cloud base height detection [9], multi-wavelength Raman lidar

measurements of aerosols enabling remote characterization of aerosols [ 10] [ 11 ] and other topics. Recently, numerical simulation

has been used to demonstrate that an airborne Raman water vapor lidar offers a dramatic increase in temporal and spatial reso-

lution compared to existing differential absorption lidars under nighttime conditions [12]. Yet, despite the availability of several

good references describing the traditional Raman lidar measurements of water vapor and aerosols [13] [14] [1] [15] [16] [17] [8]

[18] [4], the essential material needed for analyzing Raman lidar data has not been compiled previously into a single reference.

With several new Raman lidars being developed in Europe as a part of the European Aerosol Lidar Network (EARLINET) [19]

[20], it seemed an appropriate time to create such a reference. Furthermore, and perhaps more importantly, recent work in nu-

merical simulation of the Raman water vapor spectrum now permits the temperature sensitivity of Raman scattering from water

vapor to be evaluated as it has been possible for the rotational Raman scattering from diatomic molecules [21] [3] [22] since the

early days oflidar [23]. To account for this temperature sensitivity, new equations will be derived for the traditional Raman lidar

quantities.

The general organization of this paper is as follows. First, as reference material, the traditional lidar equations are pre-

sented. The temperature sensitive lidar equations are developed next after which follows a detailed description of the calculation

of atmospheric transmission. The equations and analysis examples for the aerosol extinction, aerosol scattering ratio, aerosol
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backscatteringcoefficientandwatervapormixingratioarethenpresented.Twoappendicesareincludeddealingwiththe related

topics of the infuence of multiple scattering on the calculation of aerosol extinction as well as correction for photon counting

pulse pile-up.

The sequence of sections and their content is as follows:

Section 2 - Traditional Lidar equations

Section 3 - Temperature dependent Lidar equations, atmospheric transmission function

Section 4 - Atmospheric extinction due to molecules and aerosols, aerosol optical depth

Appendix l - Consideration of the influence of multiple scattering on the calculation of aerosol extinction

Appendix 2 - Detailed description of different photon counting processing techniques

2 Traditional single scattering Rayleigh-Mie and Raman lidar equations

The backgrotmd-subtracted power received by a detector as a function of range in an elastic backscatter lidar system, assuming

no multiple scattering, can be expressed as

O(r)Po(_L)A_()_L) (N,(r) d_n(_) +I3_r (_L,r)) ia(xL,J)aJd_ (l)P (,_L,r) = r2 e-2

P' ()_i, r) is the backscattered power (after subtracting any background contribution due for example to skylight or detector

noise) received at the laser wavelength, ),L, as a function of range, r. O (r) is the channel overlap function, P0 ()_L) is the

output power of the laser at the laser wavelength, )_L. NR (r) is the number density of"air" molecules and daR (hi, 7r)/dft is

the Rayleigh backscatter cross section at the laser wavelength. /3__ (/_L, r) is the backscatter coefficient due to aerosol (Mie)

scattering at the laser wavelength and at range r and _ (AL) is the total Iidar receiver optical efficiency at the laser wavelength

and includes factors such as the reflectivity of the telescope, the transmission of any conditioning optics, the transmission of any

filters and the quantum efficiency of the detector. A is the receiver telescope area. The exponential factor gives the two-way

atmospheric transmission, where c_(£L, r) is the total extinction coefficient due to scattering and absorption by molecules and

aerosols at the laser wavelength as a function of range along the path of the laser beam. In this context, the term "aerosols" may

be used to describe any non-molecular atmospheric constituent such as dust, water droplets, ice crystals, etc.

The corresponding single scattering Raman lidar equation for a Raman species X, in its traditional form, is given in equation
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do, X ,kL,t r r t r t

Ox(r) Po()_x) Nx(r) _A_()_x) -f{_(x_,_)+,_(Xx,.)}d_
P(Ax,r) r2 x e o (2)

where now it should be noted that the transmission term includes a term at the laser wavelength, AL, (for the transmission along

the output path) and one at the backscattered wavelength, )_x, which has been shifted from the laser wavelength due to the

inelastic Raman scattering interaction with atmospheric molecules.

2.1 Temperature dependence of the equations

Equations 1 and 2 assume that the return signal can be considered to be at a discrete wavelength. In the case of the Raman signals

excited in the near UV by lasers such as the frequency tripled Nd:YAG, the desired signal actually covers an interval that can

range from a few tenths ofnanometers (e. g. the OH-stretch region of water vapor) to a few nanometers (rotational-vibrational

spectrum from diatomic molecules such as ]'42 and 02). In the case of the elastic return, there is pure rotational Raman scattering

from nitrogen, oxygen and other molecules that is centered on the laser wavelength and that covers a band of a few nanometers

as well [24].

Therefore, there is Raman scattering to be considered in both the "elastic" and Raman lidar signals. The individual line

strengths in a Raman spectrum are temperature dependent. In general, this temperature dependence should be considered when

formulating either the elastic or Raman lidar equations since, if the filter used to make the measurements transmits any Raman

signals, the intensity of the backscattered signal per molecule may be temperature sensitive.

To illustrate this, consider the case of the Raman vibrational signals. The molecules are, to a very good approximation, all

in their ground state at atmospheric temperatures as determined by the Maxwell-Boltzmann distribution. A Raman scattering

event is therefore overwhelmingly likely to involve a transition from the ground state to the Stokes (higher energy) part of the

spectrum. Thus, at atmospheric temperatures, the integral across the entire Raman Stokes band will be temperature insensitive

(the transition will appear somewhere in the spectrum). However, if only a portion of the band is transmitted, there will be a

temperature dependence to the transmitted intensity. For the case of the pure rotational Raman scattering centered on the elastic

backscatter, however, the rotational states differ little in energy from the ground state so that there is a significant probability
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thatsomeoftherotationalstateswillbeexcitedatatmospherictemperatures.Thus,inorder for the integral of pure rotational

Raman scattering to be completely temperature insensitive, it must be done across both the O and S branches of the rotational

Raman scattering. Again, if only a portion of the rotational Raman O and S branches are transmitted, the return signal will be

temperature sensitivity.

If the lidar system efficiency is constant over the wavelength interval containing a Raman feature, either vibrational or pure

rotational, then there is no temperature sensitivity to the received signals [25]. However, if narrow filters are used in the detection

of the Raman features, the total lidar system efficiency is likely to change as a function of temperature as the strengths of the

individual lines in the Raman spectrum change [26]. For example, the intensities of rotational and vibrational-rotational lines

from N2 and 02 are well predicted by the diatomic molecule line strength models. These models has been used to enable atmo-

spheric temperature measurements using Raman lidar [22] [3] [27]. These same models can be used to calculate the temperature

sensitivity of these signals for a given bandpass filter.

However, water is an asymmetric top molecule that possesses a much more complicated spectrum than does either N2 or 02.

The numerical simulation of the spectrum from asymmetric top molecules such as water vapor has, in the past, been available

to a very limited number of researchers [28] [29] [30] [31 ]. A recent publication [32] now makes it possible to easily simulate

the Raman vibrational spectrum for water vapor over a range of temperatures. This permits the full temperature sensitivity of a

Raman water vapor lidar system to be evaluated.

For example, simulated spectra of the Raman OH-stretch region of water vapor at two different temperatures are shown in

figure 1.These spectra have been simulated using 0.5 cm -1 resolution at 200K and 295K based on the data published by Avila

et. al., 1999 [32]. At the colder temperature, shown with a dashed line, the lower quantum number transitions near the band origin

of 3657 cm -1 are more likely to be excited. Conversely, at the higher temperature the higher order quantum number transitions

farther from the band origin are more likely to occur. This implies that for a narrow bandpass filter, such as the approximately

0.3 nm filter shown with a dash-dot line, the integrated intensity of the Raman feature across the transmission band will be

temperature sensitive. It should be mentioned that the atmospheric feature that is typically measured by a Raman water vapor

lidar is often referred to as the vl band of water vapor. However, at atmospheric temperatures, this portion of the spectrum also

includes contributions from v3, which must be considered for accurate simulations of the spectra [32]. Contributions from v2 or

its overtones are not significant below temperatures of 400/( [33].
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Figure 1: Raman scattering spectrum for the OH-stretch region of the spectrum simulated using a 0.5 c'm-z slit width and at
two temperatures: 200 K and 295 K. Also shown in a representation of a 0.3 nm interference filter that could be used for the
detection of the water vapor signal.
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Figure 2: The integral of the Raman differential backscatter cross section and transmission of the interference filter shown in

figure 1.

To illustrate the temperature sensitivity of the signal transmitted by the interference filter shown, the Raman water vapor

differential backscatter cross section was determined for temperatures spanning the range of 200 - 300 K. The integral of the

transmission of the interference filter shown in figure 1 and the Raman spectrum was performed at each of the temperatures. The

results are plotted in figure 2. For these calculations, the area under the filter transmission curve was normalized to unity. The

results shown in figure 2 indicate that there is approximately a 7% change in transmitted intensity between 200K and 300K.

This implies that there would be an increase in the sensitivity ofa narrowband Raman lidar at high altitudes, where atmospheric

temperatures are colder, compared to low altitudes.

These results suggest a reformulation of equations 1 and 2 in a manner that makes this temperature dependence more explicit.

Such a reformulation has been published previously [26]. In the next section, a new formulation will be presented that permits

all the temperature sensitivity of the equation to reside in a single term by which the traditional equation can be multiplied.

3 Temperature dependent lidar equations
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3.1 Elastic lidar equation

The background subtracted elastic lidar equation, analogous to equation 1, but which contains the temperature dependence

explicitly, is given below

O (r) P0 ()'L) A f_,_a df_ d,k' + fl_er (AL, r) _ (,kL) -2 f _(X,.,r )dr

P(A)_n,r) = r2 e o (3)

P (A)_n, r) is the background-subtracted, received power for the wavelength band A),n, which contains the combined

Rayleigh, Mie and rotational Raman signals, as a function of range. This is the single scattering lidar equation in a form which

for the possibility that the lidar system optical efficiency, _ (,k'), may change over the range of wavelengths A)_n. Theaccounts

subscript R is used to refer to the Rayleigh signal.

The Rayleigh signal consists of a narrow elastic return along with pure rotational lines, due primarily to N2 and 02, on

both sides of the elastic line (called the "Cabannes" line by some [34] to recognize the fact that what Lord Rayleigh [35] [36]

actually detected was a combination of elastic and rotational Raman scattering). These rotational Raman lines typically cover a

wavelength range of a few nanometers. It is therefore possible that the lidar system transmission efficiency will change over the

A.kR. The notation do'R ()(, 7r, T)/dfl, which includes the explicit temperature dependence, is thus used forwavelength range

the differential backscatter cross section for the combined effects of elastic and pure rotational Raman scattering. This formulation

allows the influence of the changing intensity of the rotational Raman lines as a function of temperature to be quantified. These

changes can introduce a temperature sensitivity to the Rayleigh signal. Calculations of the rotational Raman line intensities of

these diatomic molecules as a function of temperature [22] [3] [21] coupled with knowledge of the bandpass filter transmission

characteristics is needed to evaluate the temperature dependence of equation 3. (Pure rotational scattering from other molecules

such as water vapor [37] and carbon dioxide also exist but at such a small level as to be insignificant for the present purposes.)

Aerosols in the atmosphere are much heavier than molecules. The Doppler broadening of the return signal due to aerosols

will therefore be much less than that for molecules. Because of this, the elastic scattering due to aerosols (Mie scattering) has a

narrower spectral width than the elastic scattering from molecules. Thus, the single wavelength notations used in the traditional

lidar equation of_ _r (AL, r), for the backscatter coefficient due to aerosol scattering, and _ (AL), for the total receiver system

efficiency at the laser wavelength, are still appropriate in the temperature dependent form of the equation. At the spectral

resolution of a typical Raman Lidar system, it is not necessary to consider an interval over A_ for the elastic scattering from
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either aerosols or molecules.

3.2 Raman lidar equation

The temperature dependent equation for the signal from a vibrationally excited Raman species X is

Ox (r) 1='o(_L) Nx (r) A fzxxx de _ _'

P (A)_x, r) = r2 (4)

r i i l

-- f fc_(_,L,r )4-c_(_x,r )}dr

Xe o

where now A_x refers to the wavelength interval over which the Raman vibrational signal is detected. Notice here the lack of the

aerosol backscatter term fi,_r (,kL, r)_ ()_L) since only inelastically scattered radiation due to molecular interactions is present

in this signal. A temperature dependent function will now be introduced that will permit equations 3 and 4 to be expressed in a

manner that will simplify the upcoming derivations.

3.3 The function Fx(T)

Consider the case of the Raman scattered signal from water vapor expressed by equation 4 by replacing X by H. The integral

over A_H may be expressed as

So that FH(T) becomes:

daH(_',r,T)
df_ _ (A') d)( (5)

fax,, a_" (_''_'r)a_ ( ()d_'_'

FH(T)-- d,_.(_) ()_H) _' (6)da (firth,, (,_u )

A new function FH(T) has been introduced which carries all the temperature dependence of the lidar equation. It contains

the effects of any changes in the system transmission efficiency, _ (A), for wavelengths other than -_H within the band A_H,

which will be assumed to cover the entire Raman spectrum. The notation dart (Tr)/d_ is used to indicate the total Raman

backscatter cross section for water vapor at the stimulating wavelength. For the XeF laser (351 nm) based measurements used in

this paper that value is approximately 6.2 × 10 -:_ mZsr -1 [24] (which, at atmospheric temperatures, is essentially constant with

temperature). The interference filter transmission efficiency, _yiu_, at the center wavelength, ,_H, of the Raman feature has been
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Figure 3: The function FH (T) from equation 5 for the case of the interference filter shown in figure 2. For illustration purposes,

this plot assumes that all the wavelength variation of the lidar receiver optical efficiency is due to the interference filter.

separated from the transmission of the remaining optical components, (' (AH). This was done as a practical matter since filter

transmissions are often evaluated separately from the optical transmission of the remaining lidar system. Also, in a well designed

lidar system, the filter transmission will be the source of most of the variation in system transmission over A)_H.

Data such as presented in figure 1 may now be used to illustrate the calculation of FH(T) for the case of a water vapor

measurement using the 0.3 nm filter also shown in the figure. Similar calculations can be done for the diatomic molecules using

the previously cited references. Consider the simplifying case of (' (,_H) equal to a constant (taken to be unity for simplicity)

on the right hand side of 5 so that all variation in system transmission over the interval AAH is due to the optical filter. This is

a good approximation for a properly designed lidar system. Thus the function FH (T) given in equation 6 may be determined

by dividing the values shown in figure 2, which corresponds to the numerator of 6, by the product of the total backscatter cross

section dCrH (Tr)/df_ and the peak filter transmission efficiency _filter (AH) (taken also to be unity for simplicity). The results

are in figure 3 indicating that the interference filter shown in figure 1, assuming a peak filter transmission of 1.0, will transmit

between 90% - 96% of the full Raman water vapor band over the range of temperatures considered.
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3.4 New formulation of the single scattering Lidar equations containing temperature sensitivity

Using this simplified formulation of the temperature sensitivity, the single-scattering elastic and Raman lidar equations can be

expressed as follows

O(r) FR(T) Po(AL) A _ (),i) (fl,_ot (Ai,r) + fl:*" (AL, r)) (7)
P(AAR, r) ---- r2

-2 f a(AL,r )dr
Xe o

Ox (r) Fx(T) Po ()'L) A Nx (r) d_x(_) _(),x)
an (8)P(AAx,r) = r2

r t

×e o

where _ot (,_L, r) -- NR (r) dO'R (re)/df_, ckrR (Tr)/dO is the full Rayleigh cross section including the effects of rotational

Raman scattering, the filter transmissions are now contained within the efficiency terms (x (_) and in the case of the elastic

equation the assumption has been made that the interference filter is centered on the laser wavelength. These forms of the lidar

equations will be used in the derivations to come after considering the calculation of the transmission terms in the lidar equations.

3.5 The atmospheric transmission function

T i s i

The atmospheric transmission function for the Raman lidar equation, exp[- f (a(;_L, r ) + a(_x, r ) }dr ], accounts for the fact
o

that photons are transmitted into the atmosphere by the laser at wavelength, -_L, and return at the Raman shifted wavelength, ),x,

for Raman species X. (The Rayleigh case is handled simply by setting X ----L.) Since the atmospheric extinction is different at

these wavelengths, the transmission factor must account for this. The extinction that occurs at a certain wavelength is, in general,

due to both scattering and absorption from both aerosols and molecules in the atmosphere. The total extinction coefficient is

therefore given by aerosol and molecular contributions

M

r) = + N, (r) (X)+ (9)
i=1

In this equation, a(,k, r) is the total extinction at wavelength )_ and range r, aa_r (r) is the extinction due to aerosol scattering
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and absorption, Ni (r) is the molecular number density of the i th scatterer or absorber, ai (A) is the total scattering cross section

for the i th molecule and rh (A) is the absorption cross section for the i th molecule. M is the total number of different molecules

being considered. For a typical Raman lidar using a UV laser such as the XeF excimer (351 nm) or the frequency-tripled

Nd:YAG (355 nm), the wavelength range of the return signals is approximately 350 - 410 nm, a region of the spectrum where

molecular absorption is negligible [38]. For the purposes of the data analysis to be presented later, the molecular component

of the atmospheric extinction coefficient &(A, r) is therefore due only to scattering by the various molecules in the atmosphere.

Thus, the following equation for the extinction coefficient applies

M

a(A, r) = o_,. (r) A- _ N/(r) ai (A) (10)
i=I

Typical Rayleigh scattering formulas provide a composite cross section for the collection of molecules that make up normal

air. Using this fact to re-express the equation yields

_(_, r) = _oer (r) + N_,r (_) _a,r (_) (11)

4 Atmospheric extinction due to molecules and aerosols

In order to evaluate the atmospheric transmission function appropriate for the typical UV or visible Raman lidar, we need to

evaluate separately the contributions due to molecular and aerosol extinction.

4.1 Molecular extinction

In the absence of absorption, extinction of the laser beam is entirely due to scattering. An excellent treatment of Rayleigh

scattering in the atmosphere is given by Bucholtz [39]. Those results have been used here to calculate Rayleigh extinction.

Equation 12 gives the cross section per molecule for Rayleigh scattering [39].

24rr3 (n 2 - 1) 2 {'6+__3pn'_
_(_) = ,--z--_2_ - =,,2 (12)

A N_(ns+2 ) k,6-Ypn]

where a (A) is the cross section per molecule (in units of cm 2) at the wavelength )_(cm), n8 is the refractive index for dry air at

standard temperature and pressure (STP), Ns is the molecular number density for air at STP (2.547 x l019 cm -3) and Pn is the
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Figure 4: Variation of the Rayleigh depolarization ratio as a function of wavelength from the near UV to the near IR from reference

[39]. An accurate quantification of Rayleigh scattering should account for this varation in depolarization.

depolarization ratio defined as

I_ (13)
Pn_ I!l

where I_tl and I_ are the scattered intensities in directions parallel and perpendicular to the polarization direction of the incident

linearly polarized bream. The Rayleigh depolarization ratio changes as a function of wavelength as shown in figure 4. These

results take full account of the depolarization of the Rayleigh signal due to rotational Raman scattering [39].

Other formulations of the Rayleigh cross section [24] assumed a constant depolarization ratio. However, it actually changes

by 30% between 250 nm and 1000 nm when the influence of rotational Raman scattering is included. As will be shown later,

these formulations can differ significantly.

The refractive index of air at standard temperature and pressure (STP) may be calculated from the following empirical formula

[40] for wavelengths greater than 230 nm [39].

5791817 167909 "_

: '°-s t,23s.o - / f + 57.36---(i/J,)2J+1 o4)

It is interesting to compare the values of total Rayleigh cross section given by equations 12 and 14 and a simpler formulation

[24] given by
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Figure 5: Ratio of two formulations of total Rayleigh scattering cross section. The simpler formulation from Measures [24]

assumes that (n_ + 2) = 3 and assumes that the depolarization of air is constant with wavelength. The formulation from
Bucholtz [39] does not make these assumptions.

87ra (n_- 1) z (6 + 3p,_'] (15)_.,mp,er(_) = _-U_ -- 7p. J

where the depolarization is considered constant and where (n_ + 2) is taken to be equal to 3. Figure 5 compares these two

formulations for the case of Pn = 0.035 [24]. As the figure shows the dispersion of polarization changes the Rayleigh cross

section by approximately 1% across the wavelength range of 250 - 800 rim. Furthermore, the more complete formulation from

Bucholtz yields values approximately 1% lower than the simpler formulation in the critical wavelength region above 350 nm.

The total Rayleigh volume-scattering coefficient as a function of wavelength at STP is now given by [39]

#.= N_(Z) (_-') O6)

For any pressure, temperature or number de, sity, the Rayleigh volume scattering coefficient may be determined from [39]

P T_ (17)fl = No'(A)=#_ =fl'P_T

where fls, Ps and Ts are calculated at STP. In the absence of absorption, molecular extinction is determined completely by

Rayleigh scattering and thus the molecular component of the atmospheric extinction coefficient a(),, r), from equation 1 I, is

given by equation 17. The intensity of Rayleigh backscattering is independent of laser polarization so that polarization need not
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beconsideredhere.

4.2 Aerosol extinction

To compute aerosol extinction analytically generally requires knowledge of the exact nature of the aerosols that are responsible

for the extinction. Given the size distribution of the aerosols as a function of range and both real and imaginary indices of

refi-action, a calculation using Mie theory can be performed which will estimate the extinction as a function of range. This can

be done very accurately for non-precipitating cloud water droplets, which are spherical, provided that multiple scattering is not

significant. But for other aerosols, which can have irregular shapes that are usually not known, calculations of aerosol scattering

properties using Mie theory are approximations at best.

However, with the Raman lidar, another approach to the calculation of aerosol extinction is possible. The Raman nitrogen

(or oxygen) signal may be used to calculate the round-trip atmospheric extinction (which occurs at the laser wavelength for the

outgoing path and at the Raman shifted wavelength for the return path) directly.

4.2.1 Development of the extinction equations including the effects of temperature sensitivity

Aerosol extinction can be quantified in a direct manner by using either the Raman nitrogen or oxygen signals [41]. At the ultra-

violet and visible wavelengths of the lasers typically used in the Raman lidar systems SRL, atmospheric absorption is negligible

so aerosol extinction is determined by the total amount of light scattered into all directions. This is the integral of the aerosol

scattering phase function and quantifies an important radiative property of the aerosols. The equation for calculating the aerosol

extinction from Raman lidar data can be derived along similar lines as in Ansmann et. al. [4 I] except that the current equations

include the influence of the temperature sensitivity of Raman scattering. Assuming the use of the Raman nitrogen signal for the

calculation of aerosol extinction, the result is

dr e r) } j

(18)

where o_er()_L, r) is the extinction due to aerosols on the outgoing path at the laser wavelength, a_r(_N, r) is the aerosol

extinction on the return path at the Raman shifted wavelength, OZmot()_r, r) is the molecular extinction at the laser wavelength,
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and a,_ot (A_v, r) is the molecular extinction at the Raman shifted wavelength.

Equation 18 is the fundamental Raman lidar aerosol extinction equation. It is identical to the results of Ansmann et. al. [41 ]

except or the inclusion of the temperature dependent factor FN(T). The atmospheric number density is required to evaluate

this equation both for the calculation of the molecular extinction terms (through the use of equation 17) as well as to evaluate

the number density NN (r). In the lowest -100 km of the atmosphere the total atmospheric density is proportional to NN (r)

and thus gives identical results in the equation. The sensitivity of Raman measurements of aerosol extinction to changes in

atmospheric temperature and density variations has been studied by Ansmann et. al. [4 I]. Their conclusion was that the use

of a standard atmospheric model for calculating molecular extinction can introduce significant errors in aerosol extinction when

the aerosol loading is very low. Therefore the more accurate molecular number density profile available from a radiosonde is

recommended under such conditions.

Equation 18 indicates that the fundamental quantity that can be evaluated using a Raman lidar is the two-way extinction that

occurs along the round-trip path from the laser to a scattering element and back to the telescope. In order to translate this into

one-way extinction at a single wavelength, knowledge of the wavelength scaling of aerosol extinction is needed. The scaling of

aerosol extinction may be handled as follows [42]

a_(AL,r) _ ()_N'_k(_) (19)

where k may vary between approximately 0 and 2 depending on the nature of the aerosols [8] and is a function of range.

Using equation 19, the expression for aerosol extinction at the laser wavelength becomes

{O_(r) FN(T) NN(r)_]--_ In k _ p(_,_) ) ] - a..ot (_L, r) - amo_ (AN, r)_a_(_L, r) = dr (20)

1 + (_k_N)k(_)

An alternate form of this equation, which is preferred since it allows Gaussian distributed quantities to be regressed when

determining the numerical derivative [43] can be derived by noting that

d (ln [ON(r ) FN(T) NN(r) ])
1 7d (r) + 1 d FN(T[r]) + 1 d

ON (r) dr ON FN(T) _, Ng(z) dz

16

N_ (z)
1

d [r2p (,_N, ,F)]
?.2p (/_N, r)

(21)



whereit hasbeenexplicitlynotedthattemperatureisafunctionofrange.Usingthisexpressioninequation20yields

1 d o 1 a 1 _NN(,-)oN-_ N (r) + FN---A--(_-dTrFN(T[r]) +

1 dr 2r') ('_N, T)] Olrnol ()_L) r) -- OLrnol ()_N, 7")

Ctaer()_L,r)--__ --__[r _ (22)

1+(_) k(r)

As described in [43], the technique of least squares fitting assumes that the data to be regressed are normally distributed. The

use of equation 22 permits all quantities to be regressed to retain their original statistical distributions, assumed to be Gaussian

or near-Gaussian. This equation, therefore, is preferred to equation 20 for evaluating aerosol extinction since the ratio of two

Gaussian distributed quantities does not have a Gaussian distribution.

In principle, this equation can be used over the entire range of the lidar profile to evaluate the aerosol extinction. However,

in practice it is quite difficult to quantify the lidar channel overlap function sufficiently well to apply equation 22 in the overlap

region. This is due to the fact that the derivative of the natural logarithm of the overlap must be evaluated. In the overlap region,

the signal may be changing very rapidly so that small errors in quantifying the overlap function can introduce large errors in

the derived aerosol extinction. For this reason calculations of aerosol extinction are typically performed on the portion of the

lidar profile that is fully overlapped, i.e. where ON (r) = 1. It should be noted as well that since the extinction will typically

be evaluated over relatively short ranges (i.e. dr will in general be on the order of 100 meters), FN(T) may be considered

essentially constant for the normal atmospheric measurements to be considered here. This is the case since FN (T) is generally a

mild function of temperature, which typically changes little over a range of 100 m. For measurements of extinction in a smoke

stack or in the vicinity of flames this would not be the case, however. In this equation the atmospheric density as a function of

range will work just as well as NN (r) since they are related by a constant factor in the lower atmosphere.

Before evaluating equation 22 for the case of tropospheric aerosols, the possible influence of multiple scattering on these

measurements must be addressed. Tropospheric aerosols range in size from less than 0.1 #rn in radius up to 10 #rn and larger in

some cases [52]. The multiple scattering due to aerosols in this size range is studied in appendix 1 with the results that, for the

aerosol extinction measurements presented here, multiple scattering is negligible.

4.2.2 Evaluation of the extinction equation

The evaluation of equation 22 appears to be rather straightforward once all the required quantities are known. However, the

derivative term actually presents subtle and quite important difficulties relating to the proper statistical approach to evaluating
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aderivative,whichisdefinedonlyforcontinuousfunctions,fora setof discretepoints.Thestatisticalrulespertainingto

determiningthebestmathematicalmodelforfittingasetofdatacanbeappliedwithgoodresult.Thisprocedureisdescribedin

[43].

4.2.3 Extinction due to tropospheric aerosols

An example of aerosol extinction computed from data acquired by the NASA/GSFC Scanning Raman Lidar during the third

Convection and Moisture Experiment (CAMEX-3) [7] on the night of August 26, 1998 at Andros Island, Bahamas is shown in

figure 6. The results shown were obtained from the raw Raman lidar measurement of molecular nitrogen by first correcting for the

finite photon counting bandwidth, subtracting the background and then applying equation 22. Various photon counting correction

techniques are reviewed in appendix 2. The wide spectral bandwidths used for these XeF excimer laser based measurements imply

that the temperature sensitivity of Raman signal is negligible for these CAMEX-3 measurements [25].

The aerosol extinction profiles shown use a 20-minute summation of data. The molecular extinction coefficients were derived

using equation 17 and atmospheric density measured by a radiosonde launched that night. In the figure, the influence of the

aerosol scaling parameter (known as the Angstrom coefficient) is also tested.

Figure 6 shows a typical aerosol profile from Andros Island during the CAMEX-3 campaign. The values of extinction below

-0.25 km are influenced by the lidar overlap function. Changing the Angstrom coefficient (considered constant with range) from

k=0 to k=2 increases the aerosol extinction values by approximately 8%. It has a comparable effect on the aerosol optical depth

between 0.25 and 3 km which may be calculated by simply integrating the extinction curve over this altitude range. Using k=l,

the aerosol optical thickness (at 351 rim) between 0.25 and 3 km was approximately 0.13 for this example.

The uncertainty in the Angstrom coefficient can be reduced by using coincident sun photometer data if available. The uncer-

tainty in the Angstrom coefficient determined using a sun photometer is a function of the wavelength interval used to determine

the coefficient, the aerosol optical depth and the quality of the calibration of the instrument in use. In general, for instruments

in the NASA/GSFC Aeronet 0attp://aeronet.gsfc.nasa.gov:8080/), uncertainty in Angstrom coefficient will be less than :E0.2 for

the 340-380 nm wavelength interval if the aerosol optical thickness is greater than 0.4 [44] [45]. Due to the existence of an

Aeronet reference standard at NASA/GSFC, a -t-0.2 uncertainty in Angstrom coefficient is obtained for aerosol optical depths

greater than 0.2 [46]. It is estimated that uncertainty in the value of k contributes an error of 5% or less to these aerosol extinction

measurements.
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Figm'e 6: Aerosol extinction (at 351 rim) calculated from a 20 minute average of data from the night of August 26, 1998 at
Andros Island, Bahamas. The data were acquired at an angle of 10 degrees above the horizon to improve the signal to noise. The

resolution of the derived extinction values is approximately 150 m. The sensitivity of the aerosol scaling parameter is tested here.
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The aerosol optical depth of-0.13 in the current example implies that approximately 12% of the light was scattered from

the beam due to aerosols (e -°n3 _ 0.88). These measured values of aerosol extinction in the UV can be used to estimate the

horizontal visibility experienced by ground-based observers. The "visual range" may be estimated from the empirical formula

[241

3.91{ 550 } k-G-- (kin-l) (23)

where o_ is the total atmospheric extinction coefficient and Ro is the visual range. At visible wavelengths and under most aerosol

loading conditions, aerosol extinction is the dominant source of atmospheric attenuation [24]. For example, near the surface

in figure 6, aerosol extinction at 351 nm was approximately 0.1 km -1. Scaling this value to 550 nm using equation 19 and

k = 1 yields an aerosol extinction at 550 nm of approximately 0.06 km -1. By contrast, molecular extinction under standard

temperature and pressure conditions, using equation 16 is approximately 0.01 km -1. Using these values in equation 23, yields

a value of visual range in excess of 50 kin. The aerosol loading present on August 26 was typical for Andros Island during

CAMEX-3 implying that aerosol optical depths were low and visibilities were generally very good.

This example demonstrates that the aerosol optical depth is an important parameter than influences visibility and thus radiative

transfer. As demonstrated above, the optical depth can be determined by integrating the aerosol extinction profile. When calcu-

lating the optical depth in this manner, however, errors at all levels in the extinction profile must be added together to determine

the error budget for the optical depth calculation. This can result in a larger uncertainty in the determination of the optical depth

than the more straightforward calculation which will now be presented.

4.2.4 Aerosol optical depth

Integrating both sides of equation 18 over the range (rl, 72} yields the two way aerosol optical depth between rt and r2 :

fr r2 -1- Ol(,_N, r)] dr (24)
r)

l

-- [_mot (_L, r) + C_mot(AN, r)] dr
7"2 r (AN, rl l

The use of the right hand side of equation 24 to calculate aerosol optical depth eliminates the need to perform a derivative

of the lidar signal. This simplifies calculations when all that is needed is the mean value of extinction through a layer such as is
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requiredtocalculateopticaldepth.

Theerrorinopticaldepthis calculated using the following formulas [47]:

2 2 2 2 2 (25)x = au:kbv:az=aau+bff v

2 2 2

a_ a_, + a. (26)
x = :kauv: x-_ = u-_ v-_

2 2 2

: :l= au err ¢r u _r vz : -- = + -- (27)
7J X 2 "_ V 2

2 = a2 o_ (28)
x : aln(±bu):a z u2

In these formulas, u and v are functions of the independent variable while a and b are constants and the assumption has been

made that the covariance between u and v is zero. Applying these error propagation equations to equation 24 yields

0.2 0-2 2 2 2 2 2 2
O'p(_N ,rl ) 2

2 ON(r2) ON(rl) O'FN(T(r2)) O'FN(T(rl)) {:TNN(r2) [O'NN(rl) _ O'p(XN,r2) + __2_rMoiecularOD

CrAerosolOD_- O2y(r2) tO_(rt)_F2(T(r2))tF_r(T(rl))lN_g(r2) N2N(rl) P2(XN,r2) P2(XN,rl)

(29)

where, to be clear, it should be noted that in this equation, OrAerosolOD2 , refers to the variance of the two-way aerosol optical

depth and aMolecularOD2 refers to the variance of the one-way molecular optical depth. The variance of the O'2 (T[r]) terms will

likely be correlated between rl and r2 since the same spectral transmission data for the lidar (along with their attendant errors)

will be used at both rl and r2. This implies that a sensitivity analysis is perhaps the best way to quantify errors in optical depth

due to uncertainties in FN(T). But since FN(T) will vary little over typical ranges of optical depth calculations in the normal

atmosphere, it should contribute at most a small amount to the total error. Thus, it can be considered negligible over ranges

where the temperature does not change appreciably. Furthermore, if the calculation is done outside the region where the overlap

function is an influence the error equation reduces to

2 0-2
,._ NN (rl)

ff2AerosolO D -- O'NN(r2) -[- 71-

N_r (r2) N_ (9"1)

2 2

O'P(XN,r2) ..[_ 6rp(xN,rl) 2 (30)
p2 (AN, r_) p2 ()_N, rl) q- 2aM°lecularOD

Radiosonde density errors are generally less than 2% [48]. This can be used to simplify this equation since the error in the

radiosonde data will determine the error budget for three of the terms above. Also, for a lidar system such as the SRL that uses

photon counting data acquisition, Poisson statistics applies so that the variance in a measurement equals the accumulated number
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of counts of the measurement itself. Putting these together yields

2 < 1 1
aAer°s°ZOD _ P (AN, r2) + P (/_N, rl) -_- 4 RadErr 2 (31)

where RadErr indicates the fractional error in the radiosonde density measurement. Using 4 RadErr 2 assumes that the errors

due to the radiosonde density measurement are not correlated and this is not the case. The RadErr term includes both random

and systematic errors. Systematic radiosonde errors are likely to be correlated between the bottom, rl, and top, r2, of a layer

implying that 2 RadErr 2 factors are perhaps more appropriate in this equation explaining the use of the < symbol.

The equations are now developed for the two-way particle optical depth. If one desires to determine the one-way particle

optical depth, it is necessary to use equation 19 to handle the wavelength scaling. The appropriate error equation is this case

is essentially one-half of equation 31. Now that the calculation of atmospheric transmission and extinction has been described,

meteorological quantities may be derived. These are presented in part lI [49] of this paper.

5 Summary

As the number ofRaman lidar systems in use in the world has been on the increase recently, particularly in Europe, it seemed

an appropriate time to undertake an updated evaluation of the traditional Raman lidar water vapor and aerosol measurements

including effects such as the temperature dependence of Raman scattering. Toward that end, this paper is part I of a thorough

two-part review of the traditional, single-laser-wavelength, Raman lidar technique for measuring atmospheric aerosols and water

vapor. The temperature sensitivity of Raman scattering from water vapor was simulated numerically and used to calculate the

temperature sensitivity of a water vapor measurement using a narrow-band optical filter. A 7% change in transmitted intensity

was found for a 0.3 nm filter between 200 K and 300 K. Because of this general temperature sensitivity of Raman scattering,

new forms of the elastic and Raman lidar equations were developed that permit the temperature sensitivity of these equations

to be considered as a multiplicative factor times the traditional lidar equations. The calculation of atmospheric transmission

was discussed in detail. Significant differences were found in calculations of molecular extinction and Rayleigh backscatter

coefficient by including the effects of the dispersion of depolarization. The calculation of the differential transmission factor

required to evaluate the Raman lidar equation was also discussed in detail. The influence of the wavelength scaling of aerosols

was considered in these calculations. In part I1 [49], these temperature dependent equations are used to derive new forms of the
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equationsforaerosolscatteringratioandwatervapormixingratio.Computercodethatperformsthewatervaportemperature

sensitivitycalculationsshowninthismanuscriptisavailablefromtheauthoruponrequest.
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1 Appendix: The Influence of Multiple Scattering on Tropospheric Aerosol Extinction

Measurements

In considering light scattering by particles of the same dimension or larger than the wavelength of the incoming light, as the

particle size increases, forward-scattered light is confined to an increasingly narrow angular cone. This makes it more likely that

a photon that is scattered forward in a first scattering event will interact with another particle (the second scattering event) and be

backscattered within the field of view of the lidar receiver.

The lidar equations formulated earlier were for single scattering only. Therefore, in the case of scattering involving large

particles where multiple scattering is more likely to occur, the use of the single scattering equations can lead to errors in the

calculated quantities. Most of the quantities derived from Raman lidar data are based on ratios of lidar signals where the multiple

scattering influence tends to cancel in the ratio [50]. Examples of these quantities are the water vapor mixing ratio, liquid water

mixing ratio, aerosol scattering ratio and the aerosol backscatter coefficient. However, aerosol extinction and optical depth are

calculated using only a single lidar signal (e.g. Raman nitrogen) and, in the case of large particles, can be significantly influenced

by multiple scattering.

The influence of multiple scattering on lidar signals is related to the optical depth of the scattering medium, the size of particles

that are doing the scattering and the range to the scattering volume. The formulation developed by Eloranta [51] will be used

here to study this influence. A description of the equations used here has been published recently for the case of Raman lidar

measurements of cirrus cloud multiple scattering [7].
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Figure 7: Three AFGL aerosol size distribution models are represented: rural, maritime with aerosols primarily of rural origin,

and maritime with aerosols primarily due to sea salt spray. These distributions are appropriate for 70-80% relative humidity.

1.1 Aerosol size distributions

The Air Force Geophysics Laboratory (AFGL) size distribution models for rural and maritime aerosols [52] are presented here.

The distributions are represented by one or a sum of two log normal distributions [52]. The results are plotted in figure 7 for

rural, maritime with aerosols of primarily rural origin, and maritime with aerosol primarily due to sea salt spray.

Maritime aerosols which originate from sea salt spray are considerably larger on average than either the rural or the maritime

continental aerosols. The maritime continental model is identical to the rural model except in the large particle portion of the

distribution where the influence of the larger marine aerosols can be seen. These aerosol models are considered representative of

the types of aerosols that were likely present at Andros Island, Bahamas during the CAMEX-3 campaign.

1.2 Multiple scattering by atmospheric aerosols

Three synthetic profiles of aerosol extinction were created to study the influence of multiple scattering on the measurement of
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Figure 8: Three synthetic aerosol extinction profiles created to test multiple scattering influence on measurements of aerosol
extinction.

extinction using Raman lidar and are shown in figure 8. They have aerosol optical depths of 0.375, 0.75 and 1.5, respectively, to

simulate low, medium and high aerosol loading.

Second order multiple scattering was calculated for the three extinction profiles shown in figure 8 assuming that the aerosol

particles were of constant radius throughout the profile. To study the possible influence of multiple scattering on the extinction

measurements at Andros Island, aerosols of two radii were studied: 0.5 microns and 2.0 microns. The results are shown in figure

9 with the 0.5 micron calculations on the left and the 2.0 micron calculations on the right.

The multiple scattering due to the 0.5 micron aerosol is considerably smaller than that for the 2 micron aerosol. Considering

the 2 micron results shown on the right, it can be seen that at the peak of the high aerosol optical thickness case, the ratio of second

order scattering to single scattering is less than 3%. At most ranges and for most aerosol conditions, the ratio is considerably less

than this. The error in extinction and optical depth due to second order multiple scattering is quantified simply as In [P2/P1]/2

assuming a wavelength scaling parameter of k = 1 where P2 and P1 are the probabilities of second and first order scattering,

respectively. This implies that the error in the calculation of extinction (see section 4.2) due to second order multiple scattering
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Figure 9: Multiple scattering influence on measurements of extinction due to tropospheric aerosols. Calculations assuming con-
stant size aerosols of 0.5 micron radius are shown on the left and 2.0 microns on the right.

from 2 micron size aerosols will be at most 1.5% and usually much less than this for the cases studied here. Third order scattering

will be completely insignificant due to its much lower probability than second order scattering.

The marine oceanic model peaks at 0.3 microns and predicts that there are only 51% and 1.8% as many particles of radii 0.5

and 2 microns, respectively as at the peak. For larger particles than 2 microns, the abundance drops exponentially. Therefore, due

to the relative lack of large particles that these model calculations predict for tropospheric aerosols and the generally small effect

that multiple scattering has on the calculation of aerosol extinction, multiple scattering has been ignored in the aerosol extinction

calculations presented in this paper. However, for the case of denser media such as clouds [50] [5] [7] multiple scattering is an

effect that must be considered for a proper evaluation of extinction and optical depth.

2 Appendix: Photon pileup correction

Raman lidar systems frequently make use of photon counting data acquisition systems due to the weak nature of Raman scattering.

For example, all of the data acquired by the SRL during CAMEX-3 used photon counting electronics. Photon counting electronics

have a certain minimum pulse pair resolution time which, in the case of the 100 Mhz DSP Technology units used in the SRL

during the CAMEX-3 campaign, was approximately 10 ns. The maximum measurable count rate corresponding to this is 100

MHz. However, this maximum count rate will be obtained only for a perfectly periodic input pulse train. The Raman lidar
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Figure 1O: Probability of measuring n counts for a Poisson process characterized by a mean countrate of 40 counts per unit time.

photon counting signals obey Poisson statistics and thus, for a certain mean count rate over a one-minute data acquisition time,

the effective countrate for each laser pulse can vary significantly. For example, using a 1 # sec binwidth in the photon counters, a

40 MHz signal would correspond to 40 counts in a bin. The Poisson probability distribution for n counts with # mean is given

by

e-'*t_'_ (B.1)
P(n,_) - n!

where P (n, #) is the probability of measuring n counts in a time interval where the mean number of counts per time interval

is #. Figure 10 shows this distribution with mean of 40. From this figure, it is clear that the effective count rate of the signal from

each laser pulse can deviate significantly from the 40 MHz average. Thus, from pulse to pulse, there is a varying probability

that two pulses may arrive sufficiently closely spaced in time to be seen as a single event by the electronics.

Traditionally, there are two extremes of behavior that counting systems can exhibit. They are referred to as "paralyzable" and

"non-paralyzable" [53]. A paralyzable counting system is one which is unable to provide a second output pulse unless there is a

time interval of at least _- between two successive input pulses. If an additional pulse arrives during the response time T, known

as the deadtime, the deadtime of the apparatus is further extended by T. In this way, at high count rates, the unit will be unable to

respond and will be "paralyzed". Since the fraction of intervals that are longer than r is given by e -_'N_e"' , the equation which

relates the measured and true counting rates for a paralyzable counter is [53]
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Nm_a_,.'_d = Nr_le -_N_'' 03"2)

where Nrneasured is the observed countrate and Nr_az is the actual countrate.

A non-paratyzable counter is one in which the response time T is independent of the arrival of additional counts. In other

words, a non-paralyzable counting system will asymptotically approach a maximum counting rate as the actual countrate in-

creases. The equation describing the relationship of the measured countrate and the true countrate can be derived as follows. For

an observed countrate of Nm_8_red, the fraction of time that the counting unit is unable to respond to counts is TN,_8_d,

since each observed count will produce a single deadtime period. Thus the fraction of time that the unit is sensitive to counts is

1 - rNm_a_d. The measured count'rate may then be expressed as [53]

or

Nm_as_rect = (1 - "rNme_sured) N_eat (B.3)

N_az = Nmeas_,_ed 03.4 )

These two types of counting systems have traditionally been considered extremes of behavior such that the response of a

real system would lie somewhere in between. The two curves representing the paralyzable and non-paralyzable corrections are

plotted in figure 11 using v = 10 ns. For reference, a purely linear response is also shown.

If the count-rates are kept low (less than approximately I0-20 MHz in this example), the two equations give similar results.

The following example illustrates the use of the non-paralyzable equation. In order to implement any count saturation correction

scheme, one must determine the resolving time of the electronics. In a 100 MHz photon counting system, one would expect that

the resolving time parameter would be approximately 10 ns. The resolving time value can be determined empiricaIly from two

sets of atmospheric profiles: 1) full strength profiles 2) profiles acquired with a 10% neutral density filter in front of all PMTs.

The non-paralyzable pulse pileup correction is first applied to both the full and reduced-strength signals which then allows the

resolving time value to be determined for each PMT. Figure 12 shows the ratio of the count-corrected, reduced intensity profiles

to the count-corrected, full-strength profiles in the high nitrogen channel for resolving times of 8, 10, 12, and 14 ns. To produce

the ratios shown in the figure, the background must be subtracted from each signal. In addition, the reduced intensity and full
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Figure 11 : Comparison of paralyzable and non-paralyzable count corrections. The observed count rate of a paralyzable system

tends toward zero with increasing true count rate. The observed count rate ofa non-paralyzable system tends toward the maximum

countrate as the real count rate increases. A perfect linear system is also represented.
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